Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 547
Filter
2.
Ecohealth ; 20(1): 18-30, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-20238890

ABSTRACT

The media is a valuable pathway for transforming people's attitudes towards conservation issues. Understanding how bats are framed in the media is hence essential for bat conservation, particularly considering the recent fearmongering and misinformation about the risks posed by bats. We reviewed bat-related articles published online no later than 2019 (before the recent COVID19 pandemic), in 15 newspapers from the five most populated countries in Western Europe. We examined the extent to which bats were presented as a threat to human health and the assumed general attitudes towards bats that such articles supported. We quantified press coverage on bat conservation values and evaluated whether the country and political stance had any information bias. Finally, we assessed their terminology and, for the first time, modelled the active response from the readership based on the number of online comments. Out of 1095 articles sampled, 17% focused on bats and diseases, 53% on a range of ecological and conservation topics, and 30% only mention bats anecdotally. While most of the ecological articles did not present bats as a threat (97%), most articles focusing on diseases did so (80%). Ecosystem services were mentioned on very few occasions in both types (< 30%), and references to the economic benefits they provide were meagre (< 4%). Disease-related concepts were recurrent, and those articles that framed bats as a threat were the ones that garnered the highest number of comments. Therefore, we encourage the media to play a more proactive role in reinforcing positive conservation messaging by presenting the myriad ways in which bats contribute to safeguarding human well-being and ecosystem functioning.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , Ecosystem , Europe , Communication
3.
Epidemiol Infect ; 151: e96, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-20238550

ABSTRACT

The recent reinforcement of CoV surveillance in animals fuelled by the COVID-19 pandemic provided increasing evidence that mammals other than bats might hide further diversity and play critical roles in human infectious diseases. This work describes the results of a two-year survey carried out in Italy with the double objective of uncovering CoV diversity associated with wildlife and of excluding the establishment of a reservoir for SARS-CoV-2 in particularly susceptible or exposed species. The survey targeted hosts from five different orders and was harmonised across the country in terms of sample size, target tissues, and molecular test. Results showed the circulation of 8 CoV species in 13 hosts out of the 42 screened. Coronaviruses were either typical of the host species/genus or normally associated with their domestic counterpart. Two novel viruses likely belonging to a novel CoV genus were found in mustelids. All samples were negative for SARS-CoV-2, with minimum detectable prevalence ranging between 0.49% and 4.78% in the 13 species reaching our threshold sample size of 59 individuals. Considering that within-species transmission in white-tailed deer resulted in raising the prevalence from 5% to 81% within a few months, this result would exclude a sustained cycle after spillback in the tested species.


Subject(s)
COVID-19 , Chiroptera , Deer , One Health , Animals , Humans , Animals, Wild , COVID-19/epidemiology , COVID-19/veterinary , SARS-CoV-2 , Pandemics
4.
Sci Rep ; 13(1): 9319, 2023 Jun 08.
Article in English | MEDLINE | ID: covidwho-20236148

ABSTRACT

Establishing the host range for novel viruses remains a challenge. Here, we address the challenge of identifying non-human animal coronaviruses that may infect humans by creating an artificial neural network model that learns from spike protein sequences of alpha and beta coronaviruses and their binding annotation to their host receptor. The proposed method produces a human-Binding Potential (h-BiP) score that distinguishes, with high accuracy, the binding potential among coronaviruses. Three viruses, previously unknown to bind human receptors, were identified: Bat coronavirus BtCoV/133/2005 and Pipistrellus abramus bat coronavirus HKU5-related (both MERS related viruses), and Rhinolophus affinis coronavirus isolate LYRa3 (a SARS related virus). We further analyze the binding properties of BtCoV/133/2005 and LYRa3 using molecular dynamics. To test whether this model can be used for surveillance of novel coronaviruses, we re-trained the model on a set that excludes SARS-CoV-2 and all viral sequences released after the SARS-CoV-2 was published. The results predict the binding of SARS-CoV-2 with a human receptor, indicating that machine learning methods are an excellent tool for the prediction of host expansion events.


Subject(s)
COVID-19 , Chiroptera , Coronaviridae , Middle East Respiratory Syndrome Coronavirus , Animals , Humans , SARS-CoV-2/genetics , Phylogeny
5.
Nat Microbiol ; 8(6): 1176-1186, 2023 06.
Article in English | MEDLINE | ID: covidwho-20234313

ABSTRACT

The emergence of SARS-CoV-2 highlights a need for evidence-based strategies to monitor bat viruses. We performed a systematic review of coronavirus sampling (testing for RNA positivity) in bats globally. We identified 110 studies published between 2005 and 2020 that collectively reported positivity from 89,752 bat samples. We compiled 2,274 records of infection prevalence at the finest methodological, spatiotemporal and phylogenetic level of detail possible from public records into an open, static database named datacov, together with metadata on sampling and diagnostic methods. We found substantial heterogeneity in viral prevalence across studies, reflecting spatiotemporal variation in viral dynamics and methodological differences. Meta-analysis identified sample type and sampling design as the best predictors of prevalence, with virus detection maximized in rectal and faecal samples and by repeat sampling of the same site. Fewer than one in five studies collected and reported longitudinal data, and euthanasia did not improve virus detection. We show that bat sampling before the SARS-CoV-2 pandemic was concentrated in China, with research gaps in South Asia, the Americas and sub-Saharan Africa, and in subfamilies of phyllostomid bats. We propose that surveillance strategies should address these gaps to improve global health security and enable the origins of zoonotic coronaviruses to be identified.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , Phylogeny , SARS-CoV-2/genetics , COVID-19/epidemiology , China
6.
Viruses ; 15(5)2023 04 30.
Article in English | MEDLINE | ID: covidwho-20234187

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), believed to have originated from a bat species, can infect a wide range of non-human hosts. Bats are known to harbor hundreds of coronaviruses capable of spillover into human populations. Recent studies have shown a significant variation in the susceptibility among bat species to SARS-CoV-2 infection. We show that little brown bats (LBB) express angiotensin-converting enzyme 2 receptor and the transmembrane serine protease 2, which are accessible to and support SARS-CoV-2 binding. All-atom molecular dynamics (MD) simulations revealed that LBB ACE2 formed strong electrostatic interactions with the RBD similar to human and cat ACE2 proteins. In summary, LBBs, a widely distributed North American bat species, could be at risk of SARS-CoV-2 infection and potentially serve as a natural reservoir. Finally, our framework, combining in vitro and in silico methods, is a useful tool to assess the SARS-CoV-2 susceptibility of bats and other animal species.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Spike Glycoprotein, Coronavirus/metabolism
7.
Lancet Planet Health ; 7(6): e518-e526, 2023 06.
Article in English | MEDLINE | ID: covidwho-20230959

ABSTRACT

What is the least that humanity can do to mitigate the risks of future pandemics, to prevent worldwide surges in human deaths, illness, and suffering-and more waves of multitrillion US dollar impacts on the global economy? The issues around our consumption and trading of wildlife are diverse and complex, with many rural communities being dependent on wild meat for their nutritional needs. But bats might be one taxonomic group that can be successfully eliminated from the human diet and other uses, with minimal costs or inconvenience to the vast majority of the 8 billion people on Earth. The order Chiroptera merits genuine respect given all that these species contribute to human food supplies through pollination services provided by the frugivores and to disease risk mitigation delivered by insectivorous species. The global community missed its chance to stop SARS-CoV and SARS-CoV-2 from emerging-how many more times will humanity allow this cycle to repeat? How long will governments ignore the science that is in front of them? It's past time for humans to do the least that can be done. A global taboo is needed whereby humanity agrees to leave bats alone, not fear them or try to chase them away or cull them, but to let them have the habitats they need and live undisturbed by humans.


Subject(s)
COVID-19 , Chiroptera , Severe acute respiratory syndrome-related coronavirus , Animals , Humans , SARS-CoV-2 , Pandemics/prevention & control , COVID-19/prevention & control
8.
Microbiol Spectr ; 11(3): e0348322, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2324658

ABSTRACT

Bats are the reservoir for numerous human pathogens, including coronaviruses. Despite many coronaviruses having descended from bat ancestors, little is known about virus-host interactions and broader evolutionary history involving bats. Studies have largely focused on the zoonotic potential of coronaviruses with few infection experiments conducted in bat cells. To determine genetic changes derived from replication in bat cells and possibly identify potential novel evolutionary pathways for zoonotic virus emergence, we serially passaged six human 229E isolates in a newly established Rhinolophus lepidus (horseshoe bat) kidney cell line. Here, we observed extensive deletions within the spike and open reading frame 4 (ORF4) genes of five 229E viruses after passaging in bat cells. As a result, spike protein expression and infectivity of human cells was lost in 5 of 6 viruses, but the capability to infect bat cells was maintained. Only viruses that expressed the spike protein could be neutralized by 229E spike-specific antibodies in human cells, whereas there was no neutralizing effect on viruses that did not express the spike protein inoculated on bat cells. However, one isolate acquired an early stop codon, abrogating spike expression but maintaining infection in bat cells. After passaging this isolate in human cells, spike expression was restored due to acquisition of nucleotide insertions among virus subpopulations. Spike-independent infection of human coronavirus 229E may provide an alternative mechanism for viral maintenance in bats that does not rely on the compatibility of viral surface proteins and known cellular entry receptors. IMPORTANCE Many viruses, including coronaviruses, originated from bats. Yet, we know little about how these viruses switch between hosts and enter human populations. Coronaviruses have succeeded in establishing in humans at least five times, including endemic coronaviruses and the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In an approach to identify requirements for host switches, we established a bat cell line and adapted human coronavirus 229E viruses by serial passage. The resulting viruses lost their spike protein but maintained the ability to infect bat cells, but not human cells. Maintenance of 229E viruses in bat cells appears to be independent of a canonical spike receptor match, which in turn might facilitate cross-species transmission in bats.


Subject(s)
COVID-19 , Chiroptera , Coronavirus 229E, Human , Animals , Humans , Phylogeny , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2/metabolism
9.
PLoS Pathog ; 19(5): e1011384, 2023 05.
Article in English | MEDLINE | ID: covidwho-2324465

ABSTRACT

Malayan pangolin SARS-CoV-2-related coronavirus (SARSr-CoV-2) is closely related to SARS-CoV-2. However, little is known about its pathogenicity in pangolins. Using CT scans we show that SARSr-CoV-2 positive Malayan pangolins are characterized by bilateral ground-glass opacities in lungs in a similar manner to COVID-19 patients. Histological examination and blood gas tests are indicative of dyspnea. SARSr-CoV-2 infected multiple organs in pangolins, with the lungs the major target, and histological expression data revealed that ACE2 and TMPRSS2 were co-expressed with viral RNA. Transcriptome analysis indicated that virus-positive pangolins were likely to have inadequate interferon responses, with relative greater cytokine and chemokine activity in the lung and spleen. Notably, both viral RNA and viral proteins were detected in three pangolin fetuses, providing initial evidence for vertical virus transmission. In sum, our study outlines the biological framework of SARSr-CoV-2 in pangolins, revealing striking similarities to COVID-19 in humans.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , Pangolins/genetics , SARS-CoV-2/genetics , Virulence , Phylogeny , RNA, Viral , Tropism
10.
PLoS Comput Biol ; 19(5): e1011124, 2023 05.
Article in English | MEDLINE | ID: covidwho-2326149

ABSTRACT

Coronaviruses (CoVs) use -1 programmed ribosomal frameshifting stimulated by RNA pseudoknots in the viral genome to control expression of enzymes essential for replication, making CoV pseudoknots a promising target for anti-coronaviral drugs. Bats represent one of the largest reservoirs of CoVs and are the ultimate source of most CoVs infecting humans, including those causing SARS, MERS, and COVID-19. However, the structures of bat-CoV frameshift-stimulatory pseudoknots remain largely unexplored. Here we use a combination of blind structure prediction followed by all-atom molecular dynamics simulations to model the structures of eight pseudoknots that, together with the SARS-CoV-2 pseudoknot, are representative of the range of pseudoknot sequences in bat CoVs. We find that they all share some key qualitative features with the pseudoknot from SARS-CoV-2, notably the presence of conformers with two distinct fold topologies differing in whether or not the 5' end of the RNA is threaded through a junction, and similar conformations for stem 1. However, they differed in the number of helices present, with half sharing the 3-helix architecture of the SARS-CoV-2 pseudoknot but two containing 4 helices and two others only 2. These structure models should be helpful for future work studying bat-CoV pseudoknots as potential therapeutic targets.


Subject(s)
COVID-19 , Chiroptera , Humans , Animals , SARS-CoV-2/genetics , Frameshift Mutation , RNA , Nucleic Acid Conformation , RNA, Viral/genetics , RNA, Viral/chemistry
11.
Mol Ecol ; 32(14): 3989-4002, 2023 07.
Article in English | MEDLINE | ID: covidwho-2326110

ABSTRACT

Understanding the immunogenetic basis of coronavirus (CoV) susceptibility in major pathogen reservoirs, such as bats, is central to inferring their zoonotic potential. Members of the cryptic Hipposideros bat species complex differ in CoV susceptibility, but the underlying mechanisms remain unclear. The genes of the major histocompatibility complex (MHC) are the best understood genetic basis of pathogen resistance, and differences in MHC diversity are one possible reason for asymmetrical infection patterns among closely related species. Here, we aimed to link asymmetries in observed CoV (CoV-229E, CoV-2B and CoV-2Bbasal) susceptibility to immunogenetic differences amongst four Hipposideros bat species. From the 2072 bats assigned to their respective species using the mtDNA cytochrome b gene, members of the most numerous and ubiquitous species, Hipposideros caffer D, were most infected with CoV-229E and SARS-related CoV-2B. Using a subset of 569 bats, we determined that much of the existent allelic and functional (i.e. supertype) MHC DRB class II diversity originated from common ancestry. One MHC supertype shared amongst all species, ST12, was consistently linked to susceptibility with CoV-229E, which is closely related to the common cold agent HCoV-229E, and infected bats and those carrying ST12 had a lower body condition. The same MHC supertype was connected to resistance to CoV-2B, and bats with ST12 were less likely be co-infected with CoV-229E and CoV-2B. Our work suggests a role of immunogenetics in determining CoV susceptibility in bats. We advocate for the preservation of functional genetic and species diversity in reservoirs as a means of mitigating the risk of disease spillover.


Subject(s)
Chiroptera , Coronavirus 229E, Human , Coronavirus Infections , Coronavirus , Animals , Chiroptera/genetics , Genes, MHC Class II , Phylogeny , Coronavirus/genetics , Coronavirus 229E, Human/genetics , Histocompatibility Antigens Class II/genetics
12.
Microb Biotechnol ; 16(7): 1397-1411, 2023 07.
Article in English | MEDLINE | ID: covidwho-2313257

ABSTRACT

This Lilliput explores the current epidemiological and virological arguments for a zoonotic origin of the COVID-19 pandemic. While the role of bats, pangolins and racoon dogs as viral reservoirs has not yet been proven, a spill-over of a coronavirus infection from animals into humans at the Huanan food market in Wuhan has a much greater plausibility than alternative hypotheses such as a laboratory virus escape, deliberate genetic engineering or introduction by cold chain food products. This Lilliput highlights the dynamic nature of the animal-human interface for viral cross-infections from humans into feral white tail deer or farmed minks (reverse zoonosis). Surveillance of viral infections at the animal-human interface is an urgent task since live animal markets are not the only risks for future viral spill-overs. Climate change will induce animal migration which leads to viral exchanges between animal species that have not met in the past. Environmental change and deforestation will also increase contact between animals and humans. Developing an early warning system for emerging viral infections becomes thus a societal necessity not only for human but also for animal and environmental health (One Health concept). Microbiologists have developed tools ranging from virome analysis in key suspects such as viral reservoirs (bats, wild game animals, bushmeat) and in humans exposed to wild animals, to wastewater analysis to detect known and unknown viruses circulating in the human population and sentinel studies in animal-exposed patients with fever. Criteria need to be developed to assess the virulence and transmissibility of zoonotic viruses. An early virus warning system is costly and will need political lobbying. The accelerating number of viral infections with pandemic potential over the last decades should provide the public pressure to extend pandemic preparedness for the inclusion of early viral alert systems.


Subject(s)
COVID-19 , Chiroptera , Deer , Virus Diseases , Viruses , Dogs , Humans , Animals , SARS-CoV-2 , COVID-19/epidemiology , Pandemics , Virus Diseases/epidemiology , Virus Diseases/veterinary , Animals, Wild
13.
Cell ; 186(10): 2144-2159.e22, 2023 05 11.
Article in English | MEDLINE | ID: covidwho-2312256

ABSTRACT

Bats are special in their ability to live long and host many emerging viruses. Our previous studies showed that bats have altered inflammasomes, which are central players in aging and infection. However, the role of inflammasome signaling in combating inflammatory diseases remains poorly understood. Here, we report bat ASC2 as a potent negative regulator of inflammasomes. Bat ASC2 is highly expressed at both the mRNA and protein levels and is highly potent in inhibiting human and mouse inflammasomes. Transgenic expression of bat ASC2 in mice reduced the severity of peritonitis induced by gout crystals and ASC particles. Bat ASC2 also dampened inflammation induced by multiple viruses and reduced mortality of influenza A virus infection. Importantly, it also suppressed SARS-CoV-2-immune-complex-induced inflammasome activation. Four key residues were identified for the gain of function of bat ASC2. Our results demonstrate that bat ASC2 is an important negative regulator of inflammasomes with therapeutic potential in inflammatory diseases.


Subject(s)
Apoptosis Regulatory Proteins , Chiroptera , Inflammasomes , Ribonucleoproteins , Virus Diseases , Animals , Humans , Mice , Apoptosis Regulatory Proteins/metabolism , Chiroptera/immunology , COVID-19 , Inflammasomes/immunology , Ribonucleoproteins/metabolism , SARS-CoV-2 , Virus Diseases/immunology , Virus Physiological Phenomena
14.
Microbiol Spectr ; 11(3): e0099423, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2316423

ABSTRACT

Coronaviruses (CoVs), including severe acute respiratory syndrome CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and SARS-CoV-2, produce double-stranded RNA (dsRNA) that activates antiviral pathways such as PKR and OAS/RNase L. To successfully replicate in hosts, viruses must evade such antiviral pathways. Currently, the mechanism of how SARS-CoV-2 antagonizes dsRNA-activated antiviral pathways is unknown. In this study, we demonstrate that the SARS-CoV-2 nucleocapsid (N) protein, the most abundant viral structural protein, is capable of binding to dsRNA and phosphorylated PKR, inhibiting both the PKR and OAS/RNase L pathways. The N protein of the bat coronavirus (bat-CoV) RaTG13, the closest relative of SARS-CoV-2, has a similar ability to inhibit the human PKR and RNase L antiviral pathways. Via mutagenic analysis, we found that the C-terminal domain (CTD) of the N protein is sufficient for binding dsRNA and inhibiting RNase L activity. Interestingly, while the CTD is also sufficient for binding phosphorylated PKR, the inhibition of PKR antiviral activity requires not only the CTD but also the central linker region (LKR). Thus, our findings demonstrate that the SARS-CoV-2 N protein is capable of antagonizing the two critical antiviral pathways activated by viral dsRNA and that its inhibition of PKR activities requires more than dsRNA binding mediated by the CTD. IMPORTANCE The high transmissibility of SARS-CoV-2 is an important viral factor defining the coronavirus disease 2019 (COVID-19) pandemic. To transmit efficiently, SARS-CoV-2 must be capable of disarming the innate immune response of its host efficiently. Here, we describe that the nucleocapsid protein of SARS-CoV-2 is capable of inhibiting two critical innate antiviral pathways, PKR and OAS/RNase L. Moreover, the counterpart of the closest animal coronavirus relative of SARS-CoV-2, bat-CoV RaTG13, can also inhibit human PKR and OAS/RNase L antiviral activities. Thus, the importance of our discovery for understanding the COVID-19 pandemic is 2-fold. First, the ability of SARS-CoV-2 N to inhibit innate antiviral activity is likely a factor contributing to the transmissibility and pathogenicity of the virus. Second, the bat relative of SARS-CoV-2 has the capacity to inhibit human innate immunity, which thus likely contributed to the establishment of infection in humans. The findings described in this study are valuable for developing novel antivirals and vaccines.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , Antiviral Agents/pharmacology , SARS-CoV-2/metabolism , Nucleocapsid Proteins , Pandemics , Viral Proteins/metabolism , RNA, Double-Stranded
15.
J Mol Evol ; 91(4): 391-404, 2023 08.
Article in English | MEDLINE | ID: covidwho-2314755

ABSTRACT

The advent of next generation sequencing technologies (NGS) has greatly accelerated our understanding of critical aspects of organismal biology from non-model organisms. Bats form a particularly interesting group in this regard, as genomic data have helped unearth a vast spectrum of idiosyncrasies in bat genomes associated with bat biology, physiology, and evolution. Bats are important bioindicators and are keystone species to many eco-systems. They often live in proximity to humans and are frequently associated with emerging infectious diseases, including the COVID-19 pandemic. Nearly four dozen bat genomes have been published to date, ranging from drafts to chromosomal level assemblies. Genomic investigations in bats have also become critical towards our understanding of disease biology and host-pathogen coevolution. In addition to whole genome sequencing, low coverage genomic data like reduced representation libraries, resequencing data, etc. have contributed significantly towards our understanding of the evolution of natural populations, and their responses to climatic and anthropogenic perturbations. In this review, we discuss how genomic data have enhanced our understanding of physiological adaptations in bats (particularly related to ageing, immunity, diet, etc.), pathogen discovery, and host pathogen co-evolution. In comparison, the application of NGS towards population genomics, conservation, biodiversity assessment, and functional genomics has been appreciably slower. We reviewed the current areas of focus, identifying emerging topical research directions and providing a roadmap for future genomic studies in bats.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , Chiroptera/genetics , High-Throughput Nucleotide Sequencing , Pandemics , COVID-19/genetics , Genomics
16.
Virol Sin ; 38(3): 344-350, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2311861

ABSTRACT

The current pandemic of COVID-19 caused by a novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), threatens human health around the world. Of particular concern is that bats are recognized as one of the most potential natural hosts of SARS-CoV-2; however, coronavirus ecology in bats is still nascent. Here, we performed a degenerate primer screening and next-generation sequencing analysis of 112 bats, collected from Hainan Province, China. Three coronaviruses, namely bat betacoronavirus (Bat CoV) CD35, Bat CoV CD36 and bat alphacoronavirus CD30 were identified. Bat CoV CD35 genome had 99.5% identity with Bat CoV CD36, both sharing the highest nucleotide identity with Bat Hp-betacoronavirus Zhejiang2013 (71.4%), followed by SARS-CoV-2 (54.0%). Phylogenetic analysis indicated that Bat CoV CD35 formed a distinct clade, and together with Bat Hp-betacoronavirus Zhejiang2013, was basal to the lineage of SARS-CoV-1 and SARS-CoV-2. Notably, Bat CoV CD35 harbored a canonical furin-like S1/S2 cleavage site that resembles the corresponding sites of SARS-CoV-2. The furin cleavage sites between CD35 and CD36 are identical. In addition, the receptor-binding domain of Bat CoV CD35 showed a highly similar structure to that of SARS-CoV-1 and SARS-CoV-2, especially in one binding loop. In conclusion, this study deepens our understanding of the diversity of coronaviruses and provides clues about the natural origin of the furin cleavage site of SARS-CoV-2.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Phylogeny , Furin/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
17.
Emerg Infect Dis ; 28(12): 2500-2503, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2310054

ABSTRACT

Surveillance of bat betacoronaviruses is crucial for understanding their spillover potential. We isolated bat sarbecoviruses from Rhinolophus cornutus bats in multiple locations in Japan. These viruses grew efficiently in cells expressing R. cornutus angiotensin converting enzyme-2, but not in cells expressing human angiotensin converting enzyme-2, suggesting a narrow host range.


Subject(s)
Chiroptera , Animals , Humans , Peptidyl-Dipeptidase A , Japan/epidemiology , Betacoronavirus , Host Specificity
18.
Nat Commun ; 14(1): 2488, 2023 04 29.
Article in English | MEDLINE | ID: covidwho-2293756

ABSTRACT

Wildlife is reservoir of emerging viruses. Here we identified 27 families of mammalian viruses from 1981 wild animals and 194 zoo animals collected from south China between 2015 and 2022, isolated and characterized the pathogenicity of eight viruses. Bats harbor high diversity of coronaviruses, picornaviruses and astroviruses, and a potentially novel genus of Bornaviridae. In addition to the reported SARSr-CoV-2 and HKU4-CoV-like viruses, picornavirus and respiroviruses also likely circulate between bats and pangolins. Pikas harbor a new clade of Embecovirus and a new genus of arenaviruses. Further, the potential cross-species transmission of RNA viruses (paramyxovirus and astrovirus) and DNA viruses (pseudorabies virus, porcine circovirus 2, porcine circovirus 3 and parvovirus) between wildlife and domestic animals was identified, complicating wildlife protection and the prevention and control of these diseases in domestic animals. This study provides a nuanced view of the frequency of host-jumping events, as well as assessments of zoonotic risk.


Subject(s)
COVID-19 , Chiroptera , Viruses , Animals , Animals, Domestic/virology , Animals, Wild/virology , Animals, Zoo/virology , Chiroptera/virology , Mammals/virology , Pangolins/virology , Phylogeny , Zoonoses/virology
19.
Braz J Biol ; 83: e247237, 2021.
Article in English | MEDLINE | ID: covidwho-2266085

ABSTRACT

Novel coronavirus (nCoV) namely "SARS-CoV-2" is being found responsible for current PANDEMIC commenced from Wuhan (China) since December 2019 and has been described with epidemiological linkage to China in about 221 countries and territories until now. In this study we have characterized the genetic lineage of SARS-CoV-2 and report the recombination within the genus and subgenus of coronaviruses. Phylogenetic relationship of thirty nine coronaviruses belonging to its four genera and five subgenera was analyzed by using the Neighbor-joining method using MEGA 6.0. Phylogenetic trees of full length genome, various proteins (spike, envelope, membrane and nucleocapsid) nucleotide sequences were constructed separately. Putative recombination was probed via RDP4. Our analysis describes that the "SARS-CoV-2" although shows great similarity to Bat-SARS-CoVs sequences through whole genome (giving sequence similarity 89%), exhibits conflicting grouping with the Bat-SARS-like coronavirus sequences (MG772933 and MG772934). Furthermore, seven recombination events were observed in SARS-CoV-2 (NC_045512) by RDP4. But not a single recombination event fulfills the high level of certainty. Recombination mostly housed in spike protein genes than rest of the genome indicating breakpoint cluster arises beyond the 95% and 99% breakpoint density intervals. Genetic similarity levels observed among "SARS-CoV-2" and Bat-SARS-CoVs advocated that the latter did not exhibit the specific variant that cause outbreak in humans, proposing a suggestion that "SARS-CoV-2" has originated possibly from bats. These genomic features and their probable association with virus characteristics along with virulence in humans require further consideration.


Subject(s)
COVID-19 , Chiroptera , Animals , Computer Simulation , Genome, Viral/genetics , Humans , Phylogeny , SARS-CoV-2
20.
Rev Clin Esp (Barc) ; 223(4): 240-243, 2023 04.
Article in English | MEDLINE | ID: covidwho-2288311

ABSTRACT

More than three years have passed since the first case of a new coronavirus infection (SARS-CoV-2) in the city of Wuhan (Hubei, China). The Wuhan Institute of Virology was founded in that city in 1956 and the country's first biosafety level 4 laboratory opened within that center in 2015. The coincidence that the first cases of infection emerged in the city where the virology institute's headquarters is located, the failure to 100% identify the virus' RNA in any of the coronaviruses isolated in bats, and the lack of evidence on a possible intermediate animal host in the contagion's transmission make it so that at present, there are doubts about the real origin of SARS-CoV-2. This article will review two theories: SARS-CoV-2 as a virus of zoonotic origin or as a leak from the high-level biosafety laboratory in Wuhan.


Subject(s)
COVID-19 , Chiroptera , Animals , China/epidemiology , RNA, Viral , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL